The structure and subunit composition of the particulate NADH-ubiquinone reductase of bovine heart mitochondria.

نویسنده

  • C I Ragan
چکیده

Preparations of NADH-ubiquinone reductase from bovine heart mitochondria (Complex I) were shown to contain at least 16 polypeptides by gel electrophoresis in the presence of sodium dodecyl sulphate. 2. High-molecular-weight soluble NADH dehydrogenase prepared from Triton X-100 extracts of submitochondrial particles [Baugh & King (1972) Biochem. Biophys. Res. Commun. 49, 1165-1173] was similar to Complex I in its polypeptide composition. 3. Solubilization of Complex I by phospholipase A treatment and subsequent sucrose-density-gradient centrifugation did not alter the polypeptide composition. 4. Lysophosphatidylcholine treatment of Complex I caused some selective solubilization of a polypeptide of mol.wt. 33000 previosuly postulated to be the transmembrane component of Complex I in the mitochondrial membrane [Ragan (1975) in Energy Transducing Membranes: Structure, Function and Reconstitution (Bennun, Bacila & Najjar, eds.), Junk, The Hague, in the press]. 5. Chaotropic resolution of Complex I caused solubilization of polypeptides of molecular weights 75000, 53000, 29000, 26000 and 15500 and traces of others in the 10000-20000-mol.wt.range. 6. The major components of the iron-protein fraction from chaotropic resolution had molecular weights of 75000, 53000 and 29000, whereas the flavoprotein contained polypeptides of molecular weights 53000 and 26000 in a 1:1 molar ratio. 7. Iodination of Complex I by lactoperoxidase indicated that the water-soluble polypeptides released by chaotropic resolution, in particular those of the flavoprotein fraction, were largely buried in the intact Complex. 8. The polypeptides of molecular weights 75000, 53000, 42000, 39000, 33000, 29000 and 26000 were present in 1:2:1:1:1:1:1 molar proportions. The two subunits of molecular weight 53000 are probably non-identical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Purification and Characterization of Complex I, NADH:Ubiquinone Reductase, from the Inner Membrane of Beetroot Mitochondria.

A NADH dehydrogenase was isolated from an inner membrane-enriched fraction of beetroot mitochondria (Beta vulgaris L.) by solubilization with sodium deoxycholate and purified using gel filtration and affinity chromatography. The NADH dehydrogenase preparation contained a minor ATPase contamination. Beetroot mitochondria were chosen as the isolation material for purifying the enzymes responsible...

متن کامل

Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.

Submitochondrial particles from bovine heart in which NADH dehydrogenase is reduced by either addition of NADH and rotenone or by reversed electron transfer generate 0.9 +/- 0.1 nmol of O2-/min per mg of protein at pH 7.4 and at 30 degrees C. When NADH is used as substrate, rotenone, antimycin and cyanide increase O2- production. In NADH- and antimycin-supplemented submitochondrial particles, r...

متن کامل

Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation

1. The ability to phosphorylate ADP during oxidation of NADH by ubiquinone-1 was restored to the NADH-ubiquinone reductase complex by combining the latter with phospholipids and a hydrophobic protein fraction derived from bovine heart mitochondria. 2. Phosphorylation was abolished by rotenone, uncoupling agents, or rutamycin. The efficiency of ATP formation was as high as 0.5 mole per mole of N...

متن کامل

Proteomic analysis of peroxynitrite-induced protein nitration in isolated beef heart mitochondria.

Mitochondria are exposed to reactive nitrogen species under physiological conditions and even more under several pathologic states. In order to reveal the mechanism of these processes we studied the effects of peroxynitrite on isolated beef heart mitochondria in vitro. Peroxynitrite has the potential to nitrate protein tyrosine moieties, break the peptide bond, and eventually release the membra...

متن کامل

Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the membrane-bound electron transport chain in mitochondria. It conserves energy, from the reduction of ubiquinone by NADH, as a protonmotive force across the inner membrane, but the mechanism of energy transduction is not known. The structure of the hydrophilic arm of thermophilic complex I supports the idea that proton transloc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 154 2  شماره 

صفحات  -

تاریخ انتشار 1976